Feed aggregator

TA14-212A: Backoff Point-of-Sale Malware

US Cert latest breaches - Thu, 07/31/2014 - 11:30
Original release date: July 31, 2014
Systems Affected

Point-of-Sale Systems

 

Overview

This advisory was prepared in collaboration with the National Cybersecurity and Communications Integration Center (NCCIC), United States Secret Service (USSS), Financial Sector Information Sharing and Analysis Center (FS-ISAC), and Trustwave Spiderlabs, a trusted partner under contract with the USSS.  The purpose of this release is to provide relevant and actionable technical indicators for network defense.

Recent investigations revealed that malicious actors are using publicly available tools to locate businesses that use remote desktop applications. Remote desktop solutions like Microsoft's Remote Desktop [1] Apple Remote Desktop,[2] Chrome Remote Desktop,[3] Splashtop 2,[4] Pulseway[5], and LogMEIn Join.Me[6] offer the convenience and efficiency of connecting to a computer from a remote location. Once these applications are located, the suspects attempted to brute force the login feature of the remote desktop solution. After gaining access to what was often administrator or privileged access accounts, the suspects were then able to deploy the point-of-sale (PoS) malware and subsequently exfiltrate consumer payment data via an encrypted POST request.

USSS, NCCIC/US-CERT and Trustwave Spiderlabs have been working together to characterize newly identified malware dubbed "Backoff", associated with several PoS data breach investigations. At the time of discovery and analysis, the malware variants had low to zero percent anti-virus detection rates, which means that fully updated anti-virus engines on fully patched computers could not identify the malware as malicious.

Similar attacks have been noted in previous PoS malware campaigns [7] and some studies state that targeting the Remote Desktop Protocol with brute force attacks is on the rise.[8] A Mitigation and Prevention Strategies section is included to offer options for network defenders to consider.

Description

“Backoff” is a family of PoS malware and has been discovered recently. The malware family has been witnessed on at least three separate forensic investigations. Researchers have identified three primary variants to the “Backoff” malware including 1.4, 1.55 (“backoff”, “goo”, “MAY”, “net”), and 1.56 (“LAST”).

These variations have been seen as far back as October 2013 and continue to operate as of July 2014. In total, the malware typically consists of the following four capabilities. An exception is the earliest witnessed variant (1.4) which does not include keylogging functionality. Additionally, 1.55 ‘net’ removed the explorer.exe injection component:

  • Scraping memory for track data
  • Logging keystrokes
  • Command & control (C2) communication
  • Injecting malicious stub into explorer.exe

The malicious stub that is injected into explorer.exe is responsible for persistence in the event the malicious executable crashes or is forcefully stopped. The malware is responsible for scraping memory from running processes on the victim machine and searching for track data. Keylogging functionality is also present in most recent variants of “Backoff”. Additionally, the malware has a C2 component that is responsible for uploading discovered data, updating the malware, downloading/executing further malware, and uninstalling the malware.

Variants

Based on compiled timestamps and versioning information witnessed in the C2 HTTP POST requests, “Backoff” variants were analyzed over a seven month period. The five variants witnessed in the “Backoff” malware family have notable modifications, to include:

1.55 “backoff”

  • Added Local.dat temporary storage for discovered track data
  • Added keylogging functionality
  • Added “gr” POST parameter to include variant name
  • Added ability to exfiltrate keylog data
  • Supports multiple exfiltration domains
  • Changed install path
  • Changed User-Agent

1.55 “goo”

  • Attempts to remove prior version of malware
  • Uses 8.8.8.8 as resolver

1.55 “MAY”

  • No significant updates other than changes to the URI and version name

1.55 “net”

  • Removed the explorer.exe injection component

1.56 “LAST”

  • Re-added the explorer.exe injection component
  • Support for multiple domain/URI/port configurations
  • Modified code responsible for creating exfiltration thread(s)
  • Added persistence techniques

Command & Control Communication

All C2 communication for “Backoff” takes place via HTTP POST requests. A number of POST parameters are included when this malware makes a request to the C&C server.

  • op : Static value of ‘1’
  • id : randomly generated 7 character string
  • ui : Victim username/hostname
  • wv : Version of Microsoft Windows
  • gr (Not seen in version 1.4) : Malware-specific identifier
  • bv : Malware version
  • data (optional) : Base64-encoded/RC4-encrypted data

The ‘id’ parameter is stored in the following location, to ensure it is consistent across requests:

  • HKCU\SOFTWARE\Microsoft\Windows\CurrentVersion\identifier

If this key doesn’t exist, the string will be generated and stored. Data is encrypted using RC4 prior to being encoded with Base64. The password for RC4 is generated from the ‘id’ parameter, a static string of ‘jhgtsd7fjmytkr’, and the ‘ui’ parameter. These values are concatenated together and then hashed using the MD5 algorithm to form the RC4 password. In the above example, the RC4 password would be ‘56E15A1B3CB7116CAB0268AC8A2CD943 (The MD5 hash of ‘vxeyHkSjhgtsd7fjmytkrJosh @ PC123456).

File Indicators:

The following is a list of the Indicators of Compromise (IOCs) that should be added to the network security to search to see if these indicators are on their network.

1.4

Packed MD5: 927AE15DBF549BD60EDCDEAFB49B829E

Unpacked MD5: 6A0E49C5E332DF3AF78823CA4A655AE8

Install Path: %APPDATA%\AdobeFlashPlayer\mswinsvc.exe

Mutexes:

uhYtntr56uisGst

uyhnJmkuTgD

Files Written:

%APPDATA%\mskrnl

%APPDATA%\winserv.exe

%APPDATA%\AdobeFlashPlayer\mswinsvc.exe

Static String (POST Request): zXqW9JdWLM4urgjRkX

Registry Keys:

HKCU\SOFTWARE\Microsoft\Windows\CurrentVersion\identifier

HKCU\ SOFTWARE \Microsoft\Windows\CurrentVersion\Run\Windows NT Service

User-Agent: Mozilla/4.0

URI(s): /aircanada/dark.php

1.55 “backoff”

Packed MD5: F5B4786C28CCF43E569CB21A6122A97E

Unpacked MD5: CA4D58C61D463F35576C58F25916F258

Install Path: %APPDATA%\AdobeFlashPlayer\mswinhost.exe

Mutexes:

Undsa8301nskal

uyhnJmkuTgD

Files Written:

%APPDATA%\mskrnl

%APPDATA%\winserv.exe

%APPDATA%\AdobeFlashPlayer\mswinhost.exe

%APPDATA%\AdobeFlashPlayer\Local.dat

%APPDATA%\AdobeFlashPlayer\Log.txt

Static String (POST Request): ihasd3jasdhkas

Registry Keys:

HKCU\SOFTWARE\Microsoft\Windows\CurrentVersion\identifier

HKCU\ SOFTWARE \Microsoft\Windows\CurrentVersion\Run\Windows NT Service

User-Agent: Mozilla/5.0 (Windows NT 6.1; rv:24.0) Gecko/20100101 Firefox/24.0

URI(s): /aero2/fly.php

1.55 “goo”

Pa  cked MD5: 17E1173F6FC7E920405F8DBDE8C9ECAC

Unpacked MD5: D397D2CC9DE41FB5B5D897D1E665C549

Install Path: %APPDATA%\OracleJava\javaw.exe

Mutexes:

nUndsa8301nskal

nuyhnJmkuTgD

Files Written:

%APPDATA%\nsskrnl

%APPDATA%\winserv.exe

%APPDATA%\OracleJava\javaw.exe

%APPDATA%\OracleJava\Local.dat

%APPDATA%\OracleJava\Log.txt

Static String (POST Request): jhgtsd7fjmytkr

Registry Keys:

HKCU\SOFTWARE\Microsoft\Windows\CurrentVersion\identifier

HKCU\ SOFTWARE \Microsoft\Windows\CurrentVersion\Run\Windows NT Service

User-Agent:

URI(s): /windows/updcheck.php

1.55 “MAY”

Packed MD5: 21E61EB9F5C1E1226F9D69CBFD1BF61B

Unpacked MD5: CA608E7996DED0E5009DB6CC54E08749

Install Path: %APPDATA%\OracleJava\javaw.exe

Mutexes:

nUndsa8301nskal

nuyhnJmkuTgD

Files Written:

%APPDATA%\nsskrnl

%APPDATA%\winserv.exe

%APPDATA%\OracleJava\javaw.exe

%APPDATA%\OracleJava\Local.dat

%APPDATA%\OracleJava\Log.txt

Static String (POST Request): jhgtsd7fjmytkr

Registry Keys:

HKCU\SOFTWARE\Microsoft\Windows\CurrentVersion\identifier

HKCU\ SOFTWARE \Microsoft\Windows\CurrentVersion\Run\Windows NT Service

User-Agent:

URI(s): /windowsxp/updcheck.php

1.55 “net”

Packed MD5: 0607CE9793EEA0A42819957528D92B02

Unpacked MD5: 5C1474EA275A05A2668B823D055858D9

Install Path: %APPDATA%\AdobeFlashPlayer\mswinhost.exe

Mutexes:

nUndsa8301nskal

Files Written:

%APPDATA%\AdobeFlashPlayer\mswinhost.exe

%APPDATA%\AdobeFlashPlayer\Local.dat

%APPDATA%\AdobeFlashPlayer\Log.txt

Static String (POST Request): ihasd3jasdhkas9

Registry Keys:

HKCU\SOFTWARE\Microsoft\Windows\CurrentVersion\identifier

HKCU\ SOFTWARE \Microsoft\Windows\CurrentVersion\Run\Windows NT Service

User-Agent:

URI(s): /windowsxp/updcheck.php

1.56 “LAST”

Packed MD5: 12C9C0BC18FDF98189457A9D112EEBFC

Unpacked MD5: 205947B57D41145B857DE18E43EFB794

Install Path: %APPDATA%\OracleJava\javaw.exe

Mutexes:

nUndsa8301nskal

nuyhnJmkuTgD

Files Written:

%APPDATA%\nsskrnl

%APPDATA%\winserv.exe

%APPDATA%\OracleJava\javaw.exe

%APPDATA%\OracleJava\Local.dat

%APPDATA%\OracleJava\Log.txt

Static String (POST Request): jhgtsd7fjmytkr

Registry Keys:

HKCU\SOFTWARE\Microsoft\Windows\CurrentVersion\identifier

HKCU\ SOFTWARE \Microsoft\Windows\CurrentVersion\Run\Windows NT Service

HKLM\ SOFTWARE \Microsoft\Windows\CurrentVersion\Run\Windows NT Service

HKCU\SOFTWARE\\Microsoft\Active Setup\Installed Components\{B3DB0D62-B481-4929-888B-49F426C1A136}\StubPath

HKLM\SOFTWARE\\Microsoft\Active Setup\Installed Components\{B3DB0D62-B481-4929-888B-49F426C1A136}\StubPath

User-Agent: Mozilla/5.0 (Windows NT 6.1; rv:24.0) Gecko/20100101 Firefox/24.0

URI(s):  /windebug/updcheck.php

Impact

The impact of a compromised PoS system can affect both the businesses and consumer by exposing customer data such as names, mailing addresses, credit/debit card numbers, phone numbers, and e-mail addresses to criminal elements. These breaches can impact a business’ brand and reputation, while consumers’ information can be used to make fraudulent purchases or risk compromise of bank accounts. It is critical to safeguard your corporate networks and web servers to prevent any unnecessary exposure to compromise or to mitigate any damage that could be occurring now.

Solution

At the time this advisory is released, the variants of the “Backoff’ malware family are largely undetected by anti-virus (AV) vendors. However, shortly following the publication of this technical analysis, AV companies will quickly begin detecting the existing variants. It’s important to maintain up‐to‐date AV signatures and engines as new threats such as this are continually being added to your AV solution. Pending AV detection of the malware variants, network defenders can apply indicators of compromise (IOC) to a variety of prevention and detection strategies.[9],[10],[11] IOCs can be found above.

The forensic investigations of compromises of retail IT/payment networks indicate that the network compromises allowed the introduction of memory scraping malware to the payment terminals. Information security professionals recommend a defense in depth approach to mitigating risk to retail payment systems. While some of the risk mitigation recommendations are general in nature, the following strategies provide an approach to minimize the possibility of an attack and mitigate the risk of data compromise:

Remote Desktop Access

  • Configure the account lockout settings to lock a user account after a period of time or a specified number of failed login attempts. This prevents unlimited unauthorized attempts to login whether from an unauthorized user or via automated attack types like brute force.[12]
  • Limit the number of users and workstation who can log in using Remote Desktop.
  • Use firewalls (both software and hardware where available) to restrict access to remote desktop listening ports (default is TCP 3389).[13]
  • Change the default Remote Desktop listening port.
  • Define complex password parameters. Configuring an expiration time and password length and complexity can decrease the amount of time in which a successful attack can occur.[14]
  • Require two-factor authentication (2FA) for remote desktop access.[15 ]
  • Install a Remote Desktop Gateway to restrict access.[16 ]
  • Add an extra layer of authentication and encryption by tunneling your Remote Desktop through IPSec, SSH or SSL.[17],[18]
  • Require 2FA when accessing payment processing networks. Even if a virtual private network is used, it is important that 2FA is implemented to help mitigate keylogger or credential dumping attacks.
  • Limit administrative privileges for users and applications.
  • Periodically review systems (local and domain controllers) for unknown and dormant users.

Network Security

  • Review firewall configurations and ensure that only allowed ports, services and Internet protocol (IP) addresses are communicating with your network. This is especially critical for outbound (e.g., egress) firewall rules in which compromised entities allow ports to communicate to any IP address on the Internet. Hackers leverage this configuration to exfiltrate data to their IP addresses.
  • Segregate payment processing networks from other networks.
  • Apply access control lists (ACLs) on the router configuration to limit unauthorized traffic to payment processing networks.
  • Create strict ACLs segmenting public-facing systems and back-end database systems that house payment card data.
  • Implement data leakage prevention/detection tools to detect and help prevent data exfiltration.
  • Implement tools to detect anomalous network traffic and anomalous behavior by legitimate users (compromised credentials).

Cash Register and PoS Security

  • Implement hardware-based point-to-point encryption. It is recommended that EMV-enabled PIN entry devices or other credit-only accepting devices have Secure Reading and Exchange of Data (SRED) capabilities. SRED-approved devices can be found at the Payment Card Industry Security Standards website.
  • Install Payment Application Data Security Standard-compliant payment applications.
  • Deploy the latest version of an operating system and ensure it is up to date with security patches, anti-virus software, file integrity monitoring and a host-based intrusion-detection system.
  • Assign a strong password to security solutions to prevent application modification. Use two-factor authentication (2FA) where feasible.
  • Perform a binary or checksum comparison to ensure unauthorized files are not installed.
  • Ensure any automatic updates from third parties are validated. This means performing a checksum comparison on the updates prior to deploying them on PoS systems. It is recommended that merchants work with their PoS vendors to obtain signatures and hash values to perform this checksum validation.
  • Disable unnecessary ports and services, null sessions, default users and guests.
  • Enable logging of events and make sure there is a process to monitor logs on a daily basis.
  • Implement least privileges and ACLs on users and applications on the system.
References Revision History
  • July, 31 2014 - Initial Release

This product is provided subject to this Notification and this Privacy & Use policy.


IBM Power Systems SR-IOV: Technical Overview and Introduction

IBM News Feed - Tue, 07/29/2014 - 13:30
Redpaper, published: Tue, 29 Jul 2014

- See how SR-IOV minimizes contention with CPU and memory resources
- Explore powerful adapter-based virtualization for logical partitions
- Learn about industry standard PCI specification

This IBM® Redpaper™ publication describes the adapter-based virtualization capabilities that are being deployed in high-end IBM POWER7+™ processor-based servers.

IBM Power Systems S814 and S824 Technical Overview and Introduction

IBM News Feed - Tue, 07/22/2014 - 13:30
Draft Redpaper, last updated: Tue, 22 Jul 2014

- Outstanding performance based on POWER8 processor technology
- 4U scale-out desktop and rack-mount server
- Improved reliability, availability, and serviceability features

This IBM® Redpaper™ publication is a comprehensive guide covering the IBM Power System S814 (8286-41A) and IBM Power System S824 (8286-42A) servers that support IBM AIX®, IBM i, and Linux operating systems.

DS8000 Thin Provisioning

IBM News Feed - Thu, 07/03/2014 - 13:30
Redpaper, published: Thu, 3 Jul 2014

- Avoid allocating unused capacity
- Read about new ESE repository capability and new controls
- Understand applications and OS implications

Ever-increasing storage demands have a negative impact on an organization's IT budget and complicate the overall storage infrastructure and management.

Modernizing IBM i Applications from the Database up to the User Interface and Everything in Between

IBM News Feed - Fri, 06/27/2014 - 13:30
Redbook, published: Fri, 27 Jun 2014

- Learn about preferred practices for modern development
- Use modern tools for a modern world
- Incorporate data-centric programming for success

This IBM® Redbooks® publication is focused on melding industry preferred practices with the unique needs of the IBM i community and providing a holistic view of modernization.

TA14-150A: GameOver Zeus P2P Malware

US Cert latest breaches - Mon, 06/02/2014 - 12:15
Original release date: June 02, 2014 | Last revised: June 06, 2014
Systems Affected
  • Microsoft Windows 95, 98, Me, 2000, XP, Vista, 7, and 8
  • Microsoft Server 2003, Server 2008, Server 2008 R2, and Server 2012
Overview

GameOver Zeus (GOZ), a peer-to-peer (P2P) variant of the Zeus family of bank credential-stealing malware identified in September 2011, [1] uses a decentralized network infrastructure of compromised personal computers and web servers to execute command-and-control. The United States Department of Homeland Security (DHS), in collaboration with the Federal Bureau of Investigation (FBI) and the Department of Justice (DOJ), is releasing this Technical Alert to provide further information about the GameOver Zeus botnet.

Description

GOZ, which is often propagated through spam and phishing messages, is primarily used by cybercriminals to harvest banking information, such as login credentials, from a victim’s computer. [2] Infected systems can also be used to engage in other malicious activities, such as sending spam or participating in distributed denial-of-service (DDoS) attacks. 

Prior variants of the Zeus malware utilized a centralized command and control (C2) botnet infrastructure to execute commands. Centralized C2 servers are routinely tracked and blocked by the security community. [1] GOZ, however, utilizes a P2P network of infected hosts to communicate and distribute data, and employs encryption to evade detection. These peers act as a massive proxy network that is used to propagate binary updates, distribute configuration files, and to send stolen data. [3] Without a single point of failure, the resiliency of GOZ’s P2P infrastructure makes takedown efforts more difficult. [1]

Impact

A system infected with GOZ may be employed to send spam, participate in DDoS attacks, and harvest users' credentials for online services, including banking services.

Solution

Users are recommended to take the following actions to remediate GOZ infections:

  • Use and maintain anti-virus software - Anti-virus software recognizes and protects your computer against most known viruses. It is important to keep your anti-virus software up-to-date (see Understanding Anti-Virus Software for more information).
  • Change your passwords - Your original passwords may have been compromised during the infection, so you should change them (see Choosing and Protecting Passwords for more information).
  • Keep your operating system and application software up-to-date - Install software patches so that attackers can't take advantage of known problems or vulnerabilities. Many operating systems offer automatic updates. If this option is available, you should enable it (see Understanding Patches for more information).
  • Use anti-malware tools - Using a legitimate program that identifies and removes malware can help eliminate an infection. Users can consider employing a remediation tool (examples below) that will help with the removal of GOZ from your system.
F-Secure       

http://www.f-secure.com/en/web/home_global/online-scanner (Windows Vista, 7 and 8) 

http://www.f-secure.com/en/web/labs_global/removal-tools/-/carousel/view/142 (Windows XP)

Heimdal

http://goz.heimdalsecurity.com/ (Microsoft Windows XP, Vista, 7, 8 and 8.1)   

McAfee

www.mcafee.com/stinger (Windows XP SP2, 2003 SP2, Vista SP1, 2008, 7 and 8)

Microsoft

http://www.microsoft.com/security/scanner/en-us/default.aspx (Windows 8.1, Windows 8, Windows 7, Windows Vista, and Windows XP) 

Sophos

http://www.sophos.com/VirusRemoval (Windows XP (SP2) and above) 

Symantec

http://www.symantec.com/connect/blogs/international-takedown-wounds-gameover-zeus-cybercrime-network (Windows XP, Windows Vista and Windows 7)

Trend Micro

http://www.trendmicro.com/threatdetector (Windows XP, Windows Vista, Windows 7, Windows 8/8.1, Windows Server 2003, Windows Server 2008, and Windows Server 2008 R2)

The above are examples only and do not constitute an exhaustive list. The U.S. Government does not endorse or support any particular product or vendor.

 

References Revision History
  • Initial Publication - June 2, 2014
  • Added McAfee - June 6, 2014

This product is provided subject to this Notification and this Privacy & Use policy.


TA14-150A: GameOver Zeus P2P Malware

US Cert latest breaches - Mon, 06/02/2014 - 12:15
Original release date: June 02, 2014 | Last revised: June 06, 2014
Systems Affected
  • Microsoft Windows 95, 98, Me, 2000, XP, Vista, 7, and 8
  • Microsoft Server 2003, Server 2008, Server 2008 R2, and Server 2012
Overview

GameOver Zeus (GOZ), a peer-to-peer (P2P) variant of the Zeus family of bank credential-stealing malware identified in September 2011, [1] uses a decentralized network infrastructure of compromised personal computers and web servers to execute command-and-control. The United States Department of Homeland Security (DHS), in collaboration with the Federal Bureau of Investigation (FBI) and the Department of Justice (DOJ), is releasing this Technical Alert to provide further information about the GameOver Zeus botnet.

Description

GOZ, which is often propagated through spam and phishing messages, is primarily used by cybercriminals to harvest banking information, such as login credentials, from a victim’s computer. [2] Infected systems can also be used to engage in other malicious activities, such as sending spam or participating in distributed denial-of-service (DDoS) attacks. 

Prior variants of the Zeus malware utilized a centralized command and control (C2) botnet infrastructure to execute commands. Centralized C2 servers are routinely tracked and blocked by the security community. [1] GOZ, however, utilizes a P2P network of infected hosts to communicate and distribute data, and employs encryption to evade detection. These peers act as a massive proxy network that is used to propagate binary updates, distribute configuration files, and to send stolen data. [3] Without a single point of failure, the resiliency of GOZ’s P2P infrastructure makes takedown efforts more difficult. [1]

Impact

A system infected with GOZ may be employed to send spam, participate in DDoS attacks, and harvest users' credentials for online services, including banking services.

Solution

Users are recommended to take the following actions to remediate GOZ infections:

  • Use and maintain anti-virus software - Anti-virus software recognizes and protects your computer against most known viruses. It is important to keep your anti-virus software up-to-date (see Understanding Anti-Virus Software for more information).
  • Change your passwords - Your original passwords may have been compromised during the infection, so you should change them (see Choosing and Protecting Passwords for more information).
  • Keep your operating system and application software up-to-date - Install software patches so that attackers can't take advantage of known problems or vulnerabilities. Many operating systems offer automatic updates. If this option is available, you should enable it (see Understanding Patches for more information).
  • Use anti-malware tools - Using a legitimate program that identifies and removes malware can help eliminate an infection. Users can consider employing a remediation tool (examples below) that will help with the removal of GOZ from your system.
F-Secure       

http://www.f-secure.com/en/web/home_global/online-scanner (Windows Vista, 7 and 8) 

http://www.f-secure.com/en/web/labs_global/removal-tools/-/carousel/view/142 (Windows XP)

Heimdal

http://goz.heimdalsecurity.com/ (Microsoft Windows XP, Vista, 7, 8 and 8.1)   

McAfee

www.mcafee.com/stinger (Windows XP SP2, 2003 SP2, Vista SP1, 2008, 7 and 8)

Microsoft

http://www.microsoft.com/security/scanner/en-us/default.aspx (Windows 8.1, Windows 8, Windows 7, Windows Vista, and Windows XP) 

Sophos

http://www.sophos.com/VirusRemoval (Windows XP (SP2) and above) 

Symantec

http://www.symantec.com/connect/blogs/international-takedown-wounds-gameover-zeus-cybercrime-network (Windows XP, Windows Vista and Windows 7)

Trend Micro

http://www.trendmicro.com/threatdetector (Windows XP, Windows Vista, Windows 7, Windows 8/8.1, Windows Server 2003, Windows Server 2008, and Windows Server 2008 R2)

The above are examples only and do not constitute an exhaustive list. The U.S. Government does not endorse or support any particular product or vendor.

 

References Revision History
  • Initial Publication - June 2, 2014
  • Added McAfee - June 6, 2014

This product is provided subject to this Notification and this Privacy & Use policy.


Live Partition Mobility Preparation Checklist

IBM News Feed - Sat, 05/24/2014 - 13:30
Web Doc, published: Sat, 24 May 2014

When attempting to do Live Partition Mobility (LPM) in your environment, use the Live Partition Mobility Preparation Checklist.

Live Partition Mobility Setup Checklist

IBM News Feed - Sat, 05/24/2014 - 13:30
Web Doc, published: Sat, 24 May 2014

When setting up Live Partition Mobility (LPM) for the first time in your environment, use the Live Partition Mobility Setup Checklist.

IBM PowerVM Enhancements What is New in 2013

IBM News Feed - Thu, 05/22/2014 - 13:30
Redbook, published: Thu, 22 May 2014

- PowerVP and mobile CoD activations explained
- Shared Storage Pool enhancements explained
- Power Integrated Facility for Linux described

IBM® Power Systems™ servers coupled with IBM PowerVM® technology are designed to help clients build a dynamic infrastructure, helping to reduce costs, manage risk, and improve service levels.

IBM Power Systems SR-IOV: Technical Overview and Introduction

IBM News Feed - Tue, 05/20/2014 - 13:30
Draft Redpaper, last updated: Tue, 20 May 2014

- See how SR-IOV minimizes contention with CPU and memory resources
- Explore powerful adapter-based virtualization for logical partitions
- Learn about industry standard PCI specificationt

This IBM® Redpaper™ publication describes the adapter-based virtualization capabilities that are being deployed in high-end IBM POWER7+™ processor-based servers.

Syndicate content